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Entropy fluctuations for directed polymers in 2¿1 dimensions
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We find numerically that the sample to sample fluctuation of the entropyDS is a more sensitive tool in
distinguishing low from high temperature behaviors than the common corresponding fluctuation in the free
energy. In 111 dimensions we find a single phase for all temperatures, since (DS)2 is always extensive. In
211 dimensions we find a behavior that at first sight might appear to be a transition from a low temperature
phase where (DS)2 is extensive to a high temperature phase where it is subextensive. This is observed in spite
of the relatively large system we use. The observed behavior is explained not as a phase transition but as a
strong crossover behavior. We use an analytical argument to obtain (DS)2 for high temperature, and find that
while it is always extensive it is also extremly small, and that the leading extensive part decays very quickly
to zero as the temperature is increased.
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The problem of directed polymers has attracted much
terest in recent years. It is relevant to many fields rang
from surface growth phenomena and spin glasses to
lines in high-Tc superconductors@1–4#. It is well known that
the problem of directed polymers in a random medium
equivalent to the Kardar-Parisi-Zhang~KPZ! equation that
describes surface growth@5–7#. Much is known about the
KPZ system, in particular in 111 dimensions. The KPZ
equation provides an exact dynamical exponent for direc
polymers in 111 dimensions@5–9#. The situation for higher
dimensions is more complex. Traditional approximati
schemes like dynamical renormalization-group methods
to produce the exponents obtained by simulations@1,2,10–
15#. A self-consistent expansion of the correlation functi
introduced later@16# yields results compatible with simula
tions for 211 dimensions. Above 211 dimensions, the be
havior of directed polymers has a phase transition when t
perature is raised~in the directed polymer problem or th
level of noise in the KPZ system!, and the system goes ove
from a strong coupling behavior to a perturbative weak c
pling behavior@17–20#. All the field theoretical treatment
agree that at 211 dimensions, namely, at the lower critic
dimension itself, no transition should occur, and strong c
pling behavior exists at zero and any finite temperat
@16,19–21#. Some authors claimed in the past, on the basi
numerical simulations, to have obtained a phase transitio
(211)-dimensional systems@22–28#. The systems studied
were, however, relatively small, and all those claims w
not pursued eventually. In this paper, we present numer
results obtained for much longer systems in 111 and 211
dimensions. We study the free energy fluctuations that
usually studied in literature, but in addition we numerica
obtain the sample to sample fluctuations of the entropy. T
is a quantity that is less common in the literature, and w
introduced first, to the best of our knowledge, by Fisher a
Huse @29#. The fluctuations in the entropy are more pr
nounced than those of the free energy and, in fact, we ex
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it to be extensive in the size of the polymer in 111 and 2
11 dimensions. In higher dimensions we expect a transit
from a low temperature extensive phase to a high temp
ture subextensive one. That is, defining the quantity,l(t)
5(DS)2/t, its infinite volume limits, behaves like an orde
parameter. It is zero at high temperatures and is of order
low temperatures. The numerical results concerningl(t) in
111 dimensions are those that are expected. We find thl
is of order 1 over the entire temperature region. In 211
dimensions, the numerical results seem to indicate an un
pected transition from a low temperature phase in whichl is
of order 1 into a high temperature regime where it is a
proaching zero. Although the transition temperature seem
be defined very sharply, and althoughl(t) can be fitted at
high temperatures byl(t)} ln t/t, we claim that it is just a
crossover phenomenon, and the reasons for it occurrin
such a spectacular way will be discussed later.

Consider a directed polymer on a hyperpyramid latt
structure with the random energy assigned on each bo
The partition functionG(R,t) for directed polymers starting
from (0,0) and ending at (R,t) is defined by G(R,t)
5(Ce2EC /T, whereEC is the sum of the energy on the pa
C, andT is the temperature. For simplicity, we demonstra
our calculations using the transfer-martrix method for t
case of 111 dimensions. A similar formalism has been us
for 211 dimensions. The iteration relation for the partitio
function G(R,t) is

G~R,t11!5G~R21,t !e2e l /T1G~R11,t !e2er /T, ~1!

in which e l and e r are the energy assigned to the left a
right bonds of the point (R,t). The free energyF(t) is given
by F(t)52T ln G(t), where G(t)5(RG(R,t) is the total
partition function. The free energy fluctuationDF5(F2

2F2)1/2 was commonly studied (Ā is the ensemble averag
of the quantityA). We can also define the internal energ
^E&[(R(CECe2EC /T/(R(Ce2EC /T. The internal energy
©2001 The American Physical Society01-1
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FIG. 1. Plot of the entropy fluctuation as a function of timet for different temperatures ind5111. ~a! For T
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fluctuation (DE)T5(^E&22^E&2)1/2 is also an interesting
quantity. In order to obtain the iteration relation for the i

ternal energy ^E&, we define Ê(R,t)
[(C(R,t)EC(R,t)e

2EC(R,t) /T/G(t). It is clear that ^E&

5(RÊ(R,t). The iteration relations forÊ(R,t) are

Ê~R,t11!5@e2e l /TÊ~R21,t !G~ t !

1e2er /TÊ~R11,t !,

G~ t !1e le
2e l /TG~R21,t !1e re

2er /TG~R11,t !]/G~ t11!.
~2!

To understand the difference between the free energy
internal energy fluctuations, we use the entropyS5(^E&
2F)/T. We present systematic numerical simulations for
entropy fluctuationDS5(S22S2)1/2, based upon Eqs.~1!
and ~2!, with the initial conditions G(R,0)5dR,0 and

Ê(R,0)50. The random energy assigned on the bond is
sumed to be uniformly distributed in the interval~20.5, 0.5!
and to be uncorrelated in space and time. We use a leng
up to t52000 (d5111) andt51000 (d5211) @30#. Six
03260
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thousand configurations for 111 dimensions, and 4000 con
figurations for 211 dimensions, were collected to take th
ensemble average.

In 111 dimensions, the numerical results clearly sho
that the entropy fluctuation has the behavior (DS)2}t for
any temperature~see Fig. 1! @30#. It is expected that the
entropy fluctuation will tend to zero at limits of zero an
infinite temperature. Indeed, the slope of (DS)2/t @Fig. 3~a!#
is about 1 forT,TP , i.e., l(t);T, and about24 for T
.TP , i.e., l(t);T24. As a result, the free energy fluctua
tion and internal energy fluctuation will be the same at
two limits. About T5TP50.2, the entropy fluctuation
reaches a maximum. There is no evidence of a phase tra
tion in 111 dimensions.

The picture of directed polymers in 211 dimensions is
more complicated than that of one in 111 dimensions~see
Fig. 2!. Similar to 111 dimensions, the entropy fluctuatio
tends to zero at the two limits of zero and infinite tempe
ture, and there is a peak atTP>0.11. For low temperature
T<TP>0.11, we see that the entropy fluctuation (DS)2

tends tot and (DS)2;T as in 111 dimensions@see Figs.
2~a! and 3~b!#. However, forT.TP , we find that the in-
crease of entropy fluctuation as a function oft becomes
slower and slower as the temperature is increased@see Fig.
FIG. 2. Plot of the entropy fluctuation as a function of timet for different temperatures ind5211. ~a! For T5
1

9.3 , 1
15 , 1

20 , 1
40 , and

1
50 ~from top to bottom!. ~b! For T51, 1

2 , 1
4 , 1

5 , 1
6 , 1

7 , and 1
9.3 ~from bottom to top!.
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FIG. 3. Plot of the entropy fluctuation per unit length of the polymer as a function of temperature~a! for different times t
550, 500, 1000, and 2000 in 111 dimensions; and~b! for different timest5100, 300, 600, and 1000~from top to bottom! in 211
dimensions.
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2~b!#. At very high temperatures, e.g.,T510.0, the entropy
fluctuation is proportional to lnt for large t. It seems that
(DS)2/t will tend to the nonzero values only in the regio
0,T<TP . The fluctuations of the free energyDF are cor-
related with the fluctuations of the entropyDS. The high
temperature behavior ofDF gives for larget a logarithmic
dependence ont, while for lower temperatures we see
crossover from logarithmic behavior at smallt to DF;t0.2

for larger t ’s. However we have not seen a sharp obvio
temperature where this happens. In Fig. 3~b! we see a sharp
transition from a low temperature regionT,TP , wherel(t)
is almostt independent, to a high temperature region wh
l(t) is a decreasing function oft. The transition temperatur
is very close to the point wherel(T,t) is maximal as a
function of T for all t.

The observed behavior may be explained as follows. T
infinite system is characterized by a correlation lengthj. As
long as the sizet of the system is smaller thanj, the system
was adequately described in terms of the linear theory
deposition proposed by Edwards and Wilkinson@31#. It is
easy to show that within the Edwards-Wilkinson theo
(DS)2 is propositional, for a finite system, to lnt, as obtained
by us for high temperatures. Fort longer thanj, the nonlin-
earities become important, and (DS)2 should be extensive in
t. How is this related to the temperature dependence we fi
The correlation lengthj has a strong dependence on te
perature, andj(T) is propositional to exp@(T/T0)

u# with u
53 according to Fisher and Huse@29#, andu52 according
to Kim, Bray, and Moore@18#. In any case the temperatur
dependence ofj(T) is so strong that a relatively small in
E.

03260
s

e

e

f

d?
-

crease in temperature may result in an increase ofj(T) by
orders of magnitude, increasing it from values below t
minimal t we are using (t550) to well above the maxima
value (t51000). Indeed, a more careful examination of t
data is consistent with the above explanation. In the temp
ture regionTP,T,2TP , all the lines but the one corre
sponding to the smallestt merge. This suggests that th
asymptotic value ofl(t) has already been reached, so th
the asymptotic value is of order 1. Thus aboveTP the
asymptotic value is still finite. This may explain the form
numerical results that claimed a phase transition in 211
dimensions@22–26#. The strong dependence of the corre
tion length on temperature suggests that increasing the
of the system does not really undergo a phase transition

It is not difficult to obtain the asymptotic (t→`) high
temperature form ofl(t). As expected from the Edwards
Wilkinson model,l(t) decreases as lnt/t. This is true as long
as t.j(T), but ast becomes of the order ofj(T)l it must
tend to a constant independent ont. Therefore, we expect

l~T!}
ln j~T!

j~T!
5S T

T0
D u

expF2S T

T0
D uG . ~3!

Thus we see that althoughl is not zero, it decreases ex
tremely quickly with temperature.
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