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Entropy fluctuations for directed polymers in 2+1 dimensions
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We find numerically that the sample to sample fluctuation of the entdoBys a more sensitive tool in
distinguishing low from high temperature behaviors than the common corresponding fluctuation in the free
energy. In 11 dimensions we find a single phase for all temperatures, sit&?(is always extensive. In
2+1 dimensions we find a behavior that at first sight might appear to be a transition from a low temperature
phase whereAS)? is extensive to a high temperature phase where it is subextensive. This is observed in spite
of the relatively large system we use. The observed behavior is explained not as a phase transition but as a
strong crossover behavior. We use an analytical argument to obX&l)t for high temperature, and find that
while it is always extensive it is also extremly small, and that the leading extensive part decays very quickly
to zero as the temperature is increased.
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The problem of directed polymers has attracted much init to be extensive in the size of the polymer ir-1 and 2
terest in recent years. It is relevant to many fields rangingt 1 dimensions. In higher dimensions we expect a transition
from surface growth phenomena and spin glasses to flufom a low temperature extensive phase to a high tempera-
lines in highT, superconductorisl—4]. It is well known that  ture subextensive one. That is, defining the quaniitft)
the problem of directed polymers in a random medium is=(AS)?/t, its infinite volume limits, behaves like an order
equivalent to the Kardar-Parisi-ZharifPZ) equation that parameter. It is zero at high temperatures and is of order 1 at
describes surface growfs—7]. Much is known about the low temperatures. The numerical results concermgg in
KPZ system, in particular in 1 dimensions. The KPZ 1+ 1 dimensions are those that are expected. We find\that
equation provides an exact dynamical exponent for directeés of order 1 over the entire temperature region. l# 22
polymers in &1 dimension$5-9]. The situation for higher dimensions, the numerical results seem to indicate an unex-
dimensions is more complex. Traditional approximationpected transition from a low temperature phase in whids
schemes like dynamical renormalization-group methods faibf order 1 into a high temperature regime where it is ap-
to produce the exponents obtained by simulatigh®,10—  proaching zero. Although the transition temperature seems to
15]. A self-consistent expansion of the correlation functionbe defined very sharply, and althougkt) can be fitted at
introduced lateff16] yields results compatible with simula- high temperatures by (t)=Int/t, we claim that it is just a
tions for 2+ 1 dimensions. Above 21 dimensions, the be- crossover phenomenon, and the reasons for it occurring in
havior of directed polymers has a phase transition when tensuch a spectacular way will be discussed later.
perature is raisedin the directed polymer problem or the  Consider a directed polymer on a hyperpyramid lattice
level of noise in the KPZ systemand the system goes over structure with the random energy assigned on each bond.
from a strong coupling behavior to a perturbative weak cou-The partition functionG(R,t) for directed polymers starting
pling behavior[17-20. All the field theoretical treatments from (0,0) and ending atR,t) is defined by G(R,t)
agree that at 2 1 dimensions, namely, at the lower critical =3 e 5c/T, whereE is the sum of the energy on the path
dimension itself, no transition should occur, and strong couC, andT is the temperature. For simplicity, we demonstrate
pling behavior exists at zero and any finite temperatureour calculations using the transfer-martrix method for the
[16,19—2]. Some authors claimed in the past, on the basis otase of 11 dimensions. A similar formalism has been used
numerical simulations, to have obtained a phase transition ifor 24+ 1 dimensions. The iteration relation for the partition
(2+1)-dimensional system22—28. The systems studied function G(R,t) is
were, however, relatively small, and all those claims were
not pursued eventually. In this paper, we present numerical G(Rt+1)=G(R-1t)e T+ G(R+1t)e =T, (1)
results obtained for much longer systems i1l and 2+ 1 . . .
dimensions. We study the free energy fluctuations that arl! Which € and ¢, are the energy assigned to the left and
usually studied in literature, but in addition we numerically "9ht bonds of the pointR,t). The free energ¥ (1) is given
obtain the sample to sample fluctuations of the entropy. Thi€Y F(1)=~TInG(), where G(t)=2£G(R.t) is the total
is a quantity that is less common in the literature, and wagartition function. The free energy fluctuatiohF =(F?
introduced first, to the best of our knowledge, by Fisher and- F?)¥? was commonly studied4 is the ensemble average
Huse [29]. The fluctuations in the entropy are more pro- of the quantityA). We can also define the internal energy,
nounced than those of the free energy and, in fact, we expe¢E)=3gScEce Ec/T/S S e Ec/T. The internal energy
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FIG. 1. Plot of the entropy fluctuation as a function of tinte for different temperatures ind=1+1. (@ For T

=% % &, %, %, & andZ (from top to botton). (b) For T=10, 5, 2, 1,2, %, %, and% (from bottom to top.

fluctuation AE)=((E)2—(E)®)¥? is also an interesting thousand configurations for11 dimensions, and 4000 con-

quantity. In order to obtain the iteration relation for the in- figurations for 2+1 dimensions, were collected to take the

ternal energy  (E), we define  E(R,t) €nsemble average. .

=ScroEcrye FCRITIG(). It is clear that (E) In 1+1 dimensions, t'he numerical resullts clgarly show

_s I%(R t). The iteration relations foI%(R ) are that the entropy quctugtlon has the_ behavidrSj“oct for
RV ' any temperaturdsee Fig. 1 [30]. It is expected that the

entropy fluctuation will tend to zero at limits of zero and

E(Rt+1)=[e 4/ TE(R—11)G(1) infinite temperature. Indeed, the slope &f%)?/t [Fig. 3a)]
. is about 1 forT<Tp, i.e., N(t)~T, and about—4 for T
+e «/TE(R+1}), >Tp, i.e., \M(1)~T 4. As a result, the free energy fluctua-

tion and internal energy fluctuation will be the same at the
G(t)+ee @ TG(R-11)+¢e «/TG(R+11)]/G(t+1). two limits. Ab_out T=TP=Q.2, the_ entropy fluctuation _
2) reaches a maximum. There is no evidence of a phase transi-
tion in 1+1 dimensions.
The picture of directed polymers in+21 dimensions is
ore complicated than that of one int1l dimensiongsee
Fig. 2. Similar to 1+ 1 dimensions, the entropy fluctuation
i S =1 &ends to zero at the two limits of zero and infinite tempera-
entropy fluctuationAS=(S"—S%) ™% based upon Eqsl)  (yre and there is a peak @=0.11. For low temperatures
:imd (2), with the initial conditions G(R,0)=6dg, and T<T,=0.11, we see that the entropy fluctuatiohS)>
E(R,0)=0. The random energy assigned on the bond is astends tot and (AS)?~T as in 1+ 1 dimensiongsee Figs.
sumed to be uniformly distributed in the interat0.5, 0.5 2(a) and 3b)]. However, forT>Tp, we find that the in-
and to be uncorrelated in space and time. We use a length afease of entropy fluctuation as a function tobecomes
up tot=2000 @=1+1) andt=1000 d=2+1) [30]. Six  slower and slower as the temperature is incredsed Fig.

To understand the difference between the free energy ar‘m
internal energy fluctuations, we use the entrdpy ((E)
—F)/T. We present systematic numerical simulations for th
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FIG. 2. Plot of the entropy fluctuation as a function of titrfer different temperatures id=2+1. (a) For T= 55, i, ., 5, and
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FIG. 3. Plot of the entropy fluctuation per unit length of the polymer as a function of temper@urfer different timest
=50, 500, 1000, and 2000 in#1 dimensions; andb) for different timest=100, 300, 600, and 100drom top to bottom in 2+1
dimensions.

2(b)]. At very high temperatures, e.gl,=10.0, the entropy crease in temperature may result in an increasé(®) by
fluctuation is proportional to Ihfor larget. It seems that orders of magnitude, increasing it from values below the
(AS)?/t will tend to the nonzero values only in the region minimal t we are using {=50) to well above the maximal
0<T=<Tp. The fluctuations of the free energyf are cor- value ¢=1000). Indeed, a more careful examination of the
related with the fluctuations of the entrogyS. The high  data is consistent with the above explanation. In the tempera-
temperature behavior afF gives for larget a logarithmic  ture regionTp<T<2Tp, all the lines but the one corre-
dependence o, while for lower temperatures we see a sponding to the smallest merge. This suggests that the
crossover from logarithmic behavior at smallo AF~t%?  asymptotic value of\(t) has already been reached, so that
for largert’s. However we have not seen a sharp obviousthe asymptotic value is of order 1. Thus aboVe the
temperature where this happens. In Fih)3ve see a sharp asymptotic value is still finite. This may explain the former
transition from a low temperature regidn< T, whereh (t) numerical results that claimed a phase transition 12
is almostt independent, to a high temperature region wheredimensiong22—26. The strong dependence of the correla-
A (t) is a decreasing function of The transition temperature tion length on temperature suggests that increasing the size
is very close to the point wherg(T,t) is maximal as a of the system does not really undergo a phase transition.
function of T for all t. It is not difficult to obtain the asymptotict{->20) high

The observed behavior may be explained as follows. Théemperature form oh(t). As expected from the Edwards-
infinite system is characterized by a correlation lengtihs ~ Wilkinson model\ (t) decreases as tfi. This is true as long
long as the sizé of the system is smaller thaf) the system ast>§&(T), but ast becomes of the order a@f(T)\ it must
was adequately described in terms of the linear theory ofend to a constant independent ITherefore, we expect
deposition proposed by Edwards and Wilkind@&i]. It is
easy to show that within the Edwards-Wilkinson theory In&T) [T\ T\?
(AS)? is propositional, for a finite system, totpas obtained A(T)e &(T) :<-|—_0) F{_(?O) }
by us for high temperatures. Fbtonger thané, the nonlin-
earities become important, and$)* should be extensive in - 11,5 we see that although is not zero, it decreases ex-
t. How is thls_ related to the temperature dependence we f'”dt?emely quickly with temperature.
The correlation lengtlé has a strong dependence on tem-
perature, and(T) is propositional to exXgT/T,)?] with 6 The authors are grateful to Nehemia Schwartz and Ehud
=3 according to Fisher and Hu$29], and =2 according Perlsmann for useful discussions. X.H.W. acknowledges fi-
to Kim, Bray, and Moorg18]. In any case the temperature nancial support from the Kort Postdoctoral Program of Bar-
dependence of(T) is so strong that a relatively small in- llan University.
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